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So the probability is .95 that a child’s score (X) chosen at random would be between 
30.4 and 69.6. We may not be very interested in low scores, because they don’t represent 
problems. But anyone with a score of 69.6 or higher is a problem to someone. Only 2.5% 
of children score at least that high.
What we have just discussed is closely related to, but not quite the same as, what we will 
later consider under the heading of confidence limits. The major difference is that here 
we knew the population mean and were trying to predict where a single observation (X) 
would fall. We will later call something like this a prediction interval. When we dis-
cuss confidence limits, we will have a sample mean (or some other statistic) and will want 
to set limits that have a probability of .95 of bracketing the population mean (or some other 
relevant parameter). You do not need to know anything at all about confidence limits at this 
point. I simply mention the issue to forestall any confusion in the future.

3.5   Assessing Whether Data Are 
Normally Distributed

There will be many occasions in this book where we will assume that data are normally 
distributed, but it is difficult to look at a distribution of sample data and assess the reasona-
bleness of such an assumption. Statistics texts are filled with examples of distributions that 
look normal but aren’t, and these are often followed by statements of how distorted the 
results of some procedure are because the data were nonnormal. As I said earlier, we can 
superimpose a true normal distribution on top of a histogram and have some idea of how 
well we are doing, but that is often a misleading approach. A far better approach is to use 
what are called Q-Q plots (quantile-quantile plots).

Q-Q plots

The idea behind quantile-quantile (Q-Q) plots is basically quite simple. Suppose that we 
have a sample of 100 observations that is perfectly normally distributed with mean 5 0 and 
standard deviation 5 1. (The mean and standard deviation could be any values, but 0 and 1 
just make the discussion simpler.) With that distribution we can easily calculate what value 
would cut off, for example, the lowest 1% of the distribution. From Appendix z this would 
be a value of –2.33. We would also know that a cutoff of –2.054 cuts off the lowest 2%. 
We could make this calculation for every value of 0.00 , p , 1.00, and we could name the 
results the expected quantiles of a normal distribution. 

Now we go to the data we actually have. Because I have specified that they are per-
fectly normally distributed and that there are n 5 100 observations, the lowest score will 
be the lowest 1% and it will be –2.33. Similarly the second lowest value would cut off 2% 
of the distribution and would be –2.054. We will call these the obtained quantiles because 
they were calculated directly from the data. For a perfectly normal distribution the two sets 
of quantiles should agree exactly. The value that forms the 15th percentile of the obtained 
distribution should be exactly that value that the normal distribution would have given the 
population mean and standard deviation.

But suppose that our sample data were not normally distributed. Then we might find 
that the score cutting off the lowest 1% of our sample was –2.8 instead of –2.33. The same 
could happen for other quantiles. Here the expected quantiles from a normal distribution 
and the obtained quantiles from our sample would not agree.

But how do we measure agreement? The easiest way is to plot the two sets of quantiles 
against each other, putting the expected quantiles on the Y axis and the obtained quantiles 
on the X axis. If the distribution is normal the plot should form a straight line running at 
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a 45-degree angle. These plots are illustrated in Figure 3.10 for a set of data drawn from 
a normal distribution and a set drawn from a decidedly nonnormal distribution.

In Figure 3.10 you can see that for normal data the Q-Q plot shows that most of the points 
fall nicely on a straight line. They depart from the line a bit at each end, but that commonly 
happens unless you have very large sample sizes. For the nonnormal data, however, the plot-
ted points depart drastically from a straight line. At the lower end where we would expect 
quantiles of around –1, the lowest obtained quantile was actually about –2. In other words the 
distribution was truncated on the left. At the upper right of the Q-Q plot where we obtained 
quantiles of around 2.0, the expected value was at least 3.0. In other words the obtained data 
did not depart enough from the mean at the lower end and departed too much from the mean 
at the upper end. A program to plot Q-Q plots in R is available at the book’s Web site.

We have been looking at Achenbach’s Total Behavior Problem scores and I have sug-
gested that they are very normally distributed. Figure 3.11 presents a Q-Q plot for those 
scores. From this plot it is apparent that Behavior Problem scores are normally distributed, 
which is, in part, a function of the fact that Achenbach worked very hard to develop that 
scale and give it desirable properties.

However, let’s look at the reaction-time data that began this book. In discussing 
Figure 2.4, I said that the data are roughly normally distributed though truncated on the 
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Figure 3.10 Histograms and Q-Q plots for normal and nonnormal data
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Figure 3.11 Q-Q plot of Total Behavior Problem scores
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Figure 3.12 Q-Q plot of reaction time data

left. And the figure did, indeed, pretty much show that. But Figure 3.12 shows the Q-Q plot 
for RxTime, and you can see that it is far from a straight line. I did this to illustrate that it is 
more difficult than you might think to look at a simple histogram, with or without a super-
imposed normal distribution, and decide whether or not a distribution is normal.
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The Axes for a Q-Q Plot

In presenting the logic behind a Q-Q plot I spoke as if the variables in question were stand-
ardized, although I did mention that it was not a requirement. I did so because it was easier 
to send you to tables of normal distribution. However, you will often come across Q-Q 
plots where one or both axes are in different units, which is not a problem. The important 
consideration is the distribution of points within the plot and not the scale of either axis. 
In fact, different statistical packages not only use different scaling, but they also differ on 
which variable is plotted on which axis. If you see a plot that looks like a mirror image 
(vertically) of one of my plots that simply means they have plotted the observed values on 
the X axis instead of the expected ones.

The Kolmogorov-Smirnov Test

The best-known statistical test for normality is the Kolmogorov-Smirnov test, which is 
available within SPSS under the nonparametric tests. Although you should know that the 
test exists, most people do not recommend its use. In the first place most small samples 
will pass the test even when they are decidedly nonnormal. On the other hand, when you 
have very large samples the test is very likely to reject the hypothesis of normality even 
though minor deviations from normality will not be a problem. D’Agostino and Stephens 
(1986) put it even more strongly when they wrote, “The Kolmogorov-Smirnov test is only 
a historical curiosity. It should never be used.” I mention the test here only because you will 
come across references to it and SPSS will offer to calculate it for you. You should know 
its weaknesses.

3.6  Measures Related to z

We already have seen that the z formula given earlier can be used to convert a distribution 
with any mean and variance to a distribution with a mean of 0 and a standard deviation (and 
variance) of 1. We frequently refer to such transformed scores as standard scores. There 
are also other transformational scoring systems with particular properties, some of which 
people use every day without realizing what they are.

A good example of such a scoring system is the common IQ. The raw scores from an 
IQ test are routinely transformed to a distribution with a mean of 100 and a standard devia-
tion of 15 (or 16 in the case of the Binet). Knowing this, you can readily convert an indi-
vidual’s IQ (e.g., 120) to his or her position in terms of standard deviations above or below 
the mean (i.e., you can calculate the z score). Because IQ scores are more or less normally 
distributed, you can then convert z into a percentage measure by use of Appendix z. (In this 
example, a score of 120 has approximately 91% of the scores below it. This is known as the 
91st percentile.)

Other common examples are standard diagnostic tests that are converted to a fixed mean 
and standard deviation. (Achenbach’s test is an example.) The raw scores are transformed 
by the producer of the test and reported as coming from a distribution with a mean of 50 and 
a standard deviation of 10 (for example). Such a scoring system is easy to devise. We start 
by converting raw scores to z scores (using the obtained raw score mean and standard devia-
tion). We then convert the z scores to the particular scoring system we have in mind. Thus

New score 5 New SD * (z) 1 New mean, 

where z represents the z score corresponding to the individual’s raw score. Scoring systems 
such as the one used on Achenbach’s Youth Self-Report checklist, which have a mean set 
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